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xxix

Introduction

“Why Would You Want to Do That?”

It was 1985, and I was in a chartered bus in New York City, heading for a 
press reception with a bunch of other restless media egomaniacs. I was only 
beginning my tech journalist career (as technical editor for PC Tech Journal), and 
my first book was still months in the future. I happened to be sitting next to 
an established programming writer/guru, with whom I was impressed and to 
whom I was babbling about one thing or another. I would like to eliminate this 
statement; it adds little to the book, and as annoying as he is, even though we 
don’t name him, I now understand why he’s so annoying: He lives and works 
in a completely different culture than I do.

During our chat, I happened to let slip that I was a Turbo Pascal fanatic, and 
what I really wanted to do was learn how to write Turbo Pascal programs that 
made use of the brand new Microsoft Windows user interface. He wrinkled his 
nose and grimaced wryly, before speaking the Infamous Question:

“Why would you want to do that?”
I had never heard the question before (though I would hear it many times 

thereafter), and it took me aback. Why? Because, well, because. . .I wanted to 
know how it worked.

“Heh. That’s what C is for.”
Further discussion got me nowhere in a Pascal direction. But some probing 

led me to understand that you couldn’t write Windows apps in Turbo Pascal. It 
was impossible. Or. . .the programming writer/guru didn’t know how. Maybe 
both. I never learned the truth as it stood in 1985. (Delphi answered the question 
once and for all in 1995.) But I did learn the meaning of the Infamous Question.

Note well: When somebody asks you, “Why would you want to do that?” 
what it really means is this: “You’ve asked me how to do something that is either 



xxx	 Introduction

impossible using tools that I favor or completely outside my experience, but 
I don’t want to lose face by admitting it. So. . .how ’bout those Blackhawks?”

I heard it again and again over the years:

Q: How can I set up a C string so that I can read its length without scanning it?

A: Why would you want to do that?

Q: How can I write an assembly language subroutine callable from Turbo Pascal?

A: Why would you want to do that?

Q: How can I write Windows apps in assembly language?

A: Why would you want to do that?

You get the idea. The answer to the Infamous Question is always the same, 
and if the weasels ever ask it of you, snap back as quickly as possible: because 
I want to know how it works.

That is a completely sufficient answer. It’s the answer I’ve used every single 
time, except for one occasion a considerable number of years ago, when I put 
forth that I wanted to write a book that taught people how to program in assem-
bly language as their first experience in programming.

Q: Good grief, why would you want to do that?

A: Because it’s the best way there is to build the skills required to understand 
how all the rest of the programming universe works.

Being a programmer is one thing above all else: It is understanding how things 
work. Learning to be a programmer, furthermore, is almost entirely a process of 
learning how things work. This can be done at various levels, depending on the 
tools you’re using. If you’re programming in Visual Basic, you have to under-
stand how certain things work, but those things are by and large confined to 
Visual Basic itself. A great deal of machinery is hidden by the layer that Visual 
Basic places between the programmer and the computer. (The same is true of 
Delphi, Lazarus, Java, Python, and many other very high-level programming 
environments.) If you’re using a C compiler, you’re a lot closer to the machine, 
so you see a lot more of that machinery—and must, therefore, understand how 
it works to be able to use it. However, quite a bit remains hidden, even from 
the hardened C programmer.

If, on the other hand, you’re working in assembly language, you’re as close 
to the machine as you can get. Assembly language hides nothing, and withholds 
no power. The flipside, of course, is that no magical layer between you and the 
machine will absolve any ignorance and “take care of” things for you. If you 
don’t understand how something works, you’re dead in the water—unless you 
know enough to be able to figure it out on your own.
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That’s a key point: My goal in creating this book is not entirely to teach you 
assembly language per se. If this book has a prime directive at all, it is to impart 
a certain disciplined curiosity about the underlying machine, along with some 
basic context from which you can begin to explore the machine at its very lowest 
levels—that, and the confidence to give it your best shot. This is difficult stuff, 
but it’s nothing you can’t master given some concentration, patience, and the 
time it requires—which, I caution, may be considerable.

In truth, what I’m really teaching you here is how to learn.

What You’ll Need

To program as I intend to teach, you’re going to need a 64-bit Intel computer 
running a 64-bit distribution of Linux. The one I used in preparing this book is 
Linux Mint Cinnamon V20. 3 Una. “Una” here is a code name for this version 
of Linux Mint. It’s nothing more than a short way of saying “Linux Mint 20.3.” 
I recommend Mint; it’s thrown me fewer curves than any other distro I’ve ever 
used—and I’ve used Linux here and there ever since it first appeared. I don’t 
think which graphical shell you use matters a great deal. I like Cinnamon, but 
you can use whatever you like or are familiar with.

You need to be reasonably proficient with Linux at the user level. I can’t 
teach you how to install, configure, and run Linux in this book. If you’re not 
already familiar with Linux, get a tutorial text and work through it. There are 
many such online.

You’ll need a piece of free software called SASM, which is a simple interac-
tive development environment (IDE) for programming in assembly. Basically, 
it consists of an editor, a build system, and a front end to the standard Linux 
debugger gdb. You’ll also need a free assembler called NASM.

You don’t have to know how to download, install, and configure these tools 
in advance because, at the appropriate times, I’ll cover all necessary tool instal-
lation and configuration.

Do note that other Unix implementations not based on the Linux kernel may 
not function precisely the same way under the hood. BSD Unix uses different 
conventions for making system calls, for example, and other Unix versions like 
Solaris are outside my experience.

Remember that this book is about the x64 architecture. To the extent that x64 
contains x86, I will also be teaching elements of the x86 architecture. The gulf 
between 32-bit x86 and 64-bit x64 is a lot narrower than the gulf between 16-bit 
x86 and 32-bit x86. If you already have a firm grounding in 32-bit x86, you’ll 
breeze through most of this book at a gallop. If you can do that, cool—just please 
remember that the book is for those who are just starting out in programming 
on Intel CPUs.
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Also remember that this book is limited in size by its publisher: Paper, ink, 
and cover stock aren’t free. That means I have to narrow the scope of what I 
teach and explain within those limits. I wish I had the space to cover the AVX 
math subsystem. I don’t. But I’ll bet that once you go through this book, you 
can figure much of it out by yourself.

The Master Plan

This book starts at the beginning, and I mean the beginning. Maybe you’re already 
there, or well past it. I respect that. I still think that it wouldn’t hurt to start at 
the first chapter and read through all the chapters in order. Review is useful, 
and hey—you may realize that you didn’t know quite as much as you thought 
you did. (Happens to me all the time!)

But if time is at a premium, here’s the cheat sheet:

■■ If you already understand the fundamental ideas of computer program-
ming, skip Chapter 1.

■■ If you already understand the ideas behind number bases other than dec-
imal (especially hexadecimal and binary), skip Chapter 2.

■■ If you already have a grip on the nature of computer internals (memory, 
CPU architectures, and so on) skip Chapter 3.

■■ If you already understand x64 memory addressing, skip Chapter 4.

■■ No. Stop. Scratch that. Even if you already understand x64 memory address-
ing, read Chapter 4.

The last bullet is there, and emphatic, for a reason: Assembly language program-
ming is about memory addressing. If you don’t understand memory addressing, 
nothing else you learn in assembly will help you one. . .bit. So, don’t skip 
Chapter 4 no matter what else you know or think you know. Start from there, and 
see it through to the end. Memory addressing comes up regularly throughout 
the rest of the book. It’s really the heart of the topic.

Load every example program, assemble each one, and run them all. Strive 
to understand every single line in every program. Take nothing on faith. Fur-
thermore, don’t stop there. Change the example programs as things begin to 
make sense to you. Try different approaches. Try things that I don’t mention. Be 
audacious. Nay, go nuts—bits don’t have feelings, and the worst thing that can 
happen is that Linux throws a segmentation fault, which may hurt your program 
but does not hurt Linux. The only catch is that when you do try something, 
strive to understand why it doesn’t work as clearly as you understand all the 
other things that do. Single-step your way through a program in the SASM 
debugger, even when the program works. Take notes.
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That is, ultimately, what I’m after: to show you the way to understand what 
every however distant corner of your machine is doing and how all its many 
pieces work together. This doesn’t mean I’ll explain every corner of it myself—no 
one will live long enough to do that because computing isn’t simple anymore—
but if you develop the discipline of patient research and experimentation, you 
can probably work it out for yourself. Ultimately, that’s the only way to learn 
it: by yourself. The guidance you find—in friends, on the Net, in books like 
this—is only guidance and grease on the axles. You have to decide who’s to be 
the master, you or the machine, and make it so. Assembly programmers are the 
only programmers who can truly claim to be masters, which is a truth worth 
meditating on.

A Note on Capitalization Conventions

Assembly language is peculiar among programming languages in that there is 
no universal standard for case-sensitivity. In the C language, all identifiers are 
case-sensitive, and I have seen assemblers that do not recognize differences in 
case at all. NASM, the assembler I’m presenting in this book, is case-sensitive 
only for programmer-defined identifiers. The instruction mnemonics and the 
names of registers, however, are not case sensitive.

There are customs in the literature on assembly language, and one of those 
customs is to treat CPU instruction mnemonics as uppercase in the chapter text 
and in lowercase in source code files and code snippets interspersed within the 
text. I’ll be following that custom here. Within discussion text, I’ll speak of MOV 
and CALL and CMP. In example code, it will be mov and call and cmp. Code snip-
pets and listings will be in a monospace Courier-style font. When mentioned in 
the text, registers will be in uppercase but not in the Courier font and lowercase 
in snippets and listings.

There are two reasons for this:

■■ In text discussions, the mnemonics need to stand out. It’s too easy to lose 
track of them amid a torrent of ordinary mixed-case words.

■■ To read and learn from existing documents and source code outside of 
this one book, you need to be able to easily read assembly language whether 
it’s in uppercase, lowercase, or mixed case. Getting comfortable with dif-
ferent ways of expressing the same things is important.

Remember Why You’re Here

Anyway. Wherever you choose to start the book, it’s time to get underway. Just 
remember that whatever gets in your face, be it the weasels, the machine, or 
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your own inexperience, the thing to keep in the forefront of your mind is this: 
You’re in it to figure out how it works.

Let’s go.

Jeff Duntemann
Scottsdale, Arizona
May 24, 2023
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Another Pleasant Valley Saturday

“Quick, Mike, get your sister and brother up; it’s past 7. Nicky’s got  
Little League at 9, and Dione’s got ballet at 10. Give Max his heartworm 
pill! (We’re out of them, Mom, remember?) Your father picked a great 
weekend to go fishing . . . . Here, let me give you 10 bucks and go get  
more pills at the vet’s  .  .  .  . My God, that’s right, Hank needed gas 
money and left me broke. There’s a teller machine over by Kmart, and if  
I go there, I can take that stupid toilet seat back and get the right one. 
“I guess I’d better make a list . . . .”

It’s another Pleasant Valley Saturday, and 30-odd million suburban home-
makers sit down with a pencil and pad at the kitchen table to try to make 
sense of a morning that would kill and pickle any lesser being. In her mind 
she thinks of the dependencies and traces the route:

“Drop Nicky at Rand Park, go back to Dempster, and it’s about 10 minutes 
to Golf Mill Mall. Do I have gas? I’d better check first—if not, stop at Del’s 
Shell or I won’t make it to Milwaukee Avenue. Milk the teller machine at Golf 
Mill; then cross the parking lot to Kmart to return the toilet seat that Hank 

It’s All in the Plan
Understanding What Computers Really Do
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bought last weekend without checking what shape it was. Gotta remember 
to throw the toilet seat in back of the van—write that at the top of the list.

“By then it’ll be half past, maybe later. Ballet is all the way down Green-
wood in Park Ridge. No left turn from Milwaukee—but there’s the sneak 
path around behind the mall. I have to remember not to turn right onto 
Milwaukee like I always do—jot that down. While I’m in Park Ridge, I can 
check and see if Hank’s new glasses are in—should call, but they won’t even 
be open until 9:30. Oh, and groceries—can do that while Dione dances. On 
the way back I can cut over to Oakton and get the dog’s pills.”	  

In about 90 seconds flat the list is complete:

■■ Throw toilet seat in van.

■■ Check gas––if empty, stop at Del’s Shell.

■■ Drop Nicky at Rand Park.

■■ Stop at Golf Mill teller machine.

■■ Return toilet seat at Kmart.

■■ Drop Dione at ballet (remember the sneak path to Greenwood).

■■ See if Hank’s glasses are at Pearle Vision—if they are, make double sure 
they remembered the extra scratch coating.

■■ Get groceries at Jewel.

■■ Pick up Dione.

■■ Stop at vet for heartworm pills.

■■ Drop off groceries at home.

■■ If it’s time, pick up Nicky. If not, collapse for a few minutes; then pick 
up Nicky.

■■ Collapse!

What we often call a “laundry list” (whether it involves laundry or not) is 
the perfect metaphor for a computer program. Without realizing it, our intrepid 
homemaker has written herself a computer program and then set out (with her-
self acting as the computer) to execute it and be done before noon.

Computer programming is nothing more than this: you the programmer 
write a list of steps and tests. The computer then performs each step and test in 
sequence. When the list of steps has been executed, the computer stops.

A computer program is a list of steps and tests, nothing more.
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Steps and Tests
Think for a moment about what I call a test in the preceding laundry list. A test 
is the sort of either/or decision we make dozens or hundreds of times on even 
the most placid of days, sometimes nearly without thinking about it.

Our homemaker performed a test when she jumped into the van to get started 
on her adventure. She looked at the gas gauge. The gas gauge would tell her 
one of two things: (1) she has enough gas, or (2) she doesn’t. If she has enough 
gas, she takes a right and heads for Rand Park. If she doesn’t have enough gas, 
she takes a left down to the corner and fills the tank at Del’s Shell. (Del takes 
credit cards.) Then, with a full tank, she continues the program by making a 
U-turn and heading for Rand Park.

In the abstract, a test consists of these two parts:

■■ First, you take a look at something that can go one of two ways.

■■ Then you do one of two things, depending on what you saw when you 
took a look.

Toward the end of the program, our homemaker got home, took the groceries 
out of the van, and looked at the clock. If it isn’t time to get Nicky back from 
Little League, she has a moment to collapse on the couch in a nearly empty 
house. If it is time to get Nicky, there’s no rest for the ragged: she sprints for 
the van and heads back to Rand Park.

(Any guesses as to whether she really gets to rest when the program finishes 
running?)

More Than Two Ways?
You might object, saying that many or most tests involve more than two alter-
natives. Sorry, you’re wrong––in every case. Read this twice: except for totally 
impulsive or psychotic behavior, every human decision comes down to the 
choice between two alternatives.

What you have to do is look a little more closely at what goes through your 
mind when you make decisions. The next time you buzz down to Chow Now 
for fast Chinese, observe yourself while you’re poring over the menu. The choice 
might seem, at first, to be of one item out of 26 Cantonese main courses. Not 
so—the choice, in fact, is between choosing one item and not choosing that one 
item. Your eyes rest on chicken with cashews. Naw, too bland. That was a test. 
You slide down to the next item. Chicken with black mushrooms. Hmmm, no, 
had that last week. That was another test. Next item: kung pao chicken. Yeah, 
that’s it! That was a third test.
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The choice was not among chicken with cashews, chicken with black mush-
rooms, and chicken with kung pao. Each dish had its moment, poised before 
the critical eye of your mind, and you turned thumbs up or thumbs down on 
it, individually. Eventually, one dish won, but it won in that same game of “to 
eat or not to eat.”

Let me give you another example. Many of life’s most complicated decisions 
come about because 99.99867 percent of us are not nudists. You’ve been there: 
you’re standing in the clothes closet in your underwear, flipping through your 
rack of pants. The tests come thick and fast. This one? No. This one? No. This 
one? No. This one? Yeah. You pick a pair of blue pants, say. (It’s a Monday, 
after all, and blue would seem an appropriate color.) Then you stumble over 
to your sock drawer and take a look. Whoops, no blue socks. That was a test. 
So you stumble back to the clothes closet, hang your blue pants back on the 
pants rack, and start over. This one? No. This one? No. This one? Yeah. This 
time it’s brown pants, and you toss them over your arm and head back to the 
sock drawer to take another look. Nertz, out of brown socks, too. So it’s back 
to the clothes closet . . . .

What you might consider a single decision, or perhaps two decisions inex-
tricably tangled (like picking pants and socks of the same color, given stock 
on hand), is actually a series of small decisions, always binary in nature: pick 
’em or don’t pick ’em. Find ’em or don’t find ’em. The Monday morning epi-
sode in the clothes closet is a good analogy of a programming structure called 
a loop: you keep doing a series of things until you get it right, and then you 
stop (assuming you’re not the kind of geek who wears blue socks with brown 
pants). But whether you get everything right always comes down to a sequence 
of simple either/or decisions.

Computers Think Like Us
I can almost hear what you’re thinking: “Sure, it’s a computer book, and he’s 
trying to get me to think like a computer.” Not at all. Computers think like 
us. We designed them; how else could they think? No, what I’m trying to do 
is get you to take a long, hard look at how you think. We run on automatic for 
so much of our lives that we literally do most of our thinking without really 
thinking about it.

The best model for the logic of a computer program is the same logic we use 
to plan and manage our daily affairs. No matter what we do, it comes down to a 
matter of confronting two alternatives and picking one. What we might think of 
as a single large and complicated decision is nothing more than a messy tangle 
of many smaller decisions. The skill of looking at a complex decision and see-
ing all the little decisions in its tummy will serve you well in learning how to 



	 Chapter 1 ■ It’s All in the Plan	 5

program. Observe yourself the next time you have to decide something. Count 
up the little decisions that make up the big one. You’ll be surprised.

And, surprise! You’ll be a programmer.

Had This Been the Real Thing . . .

Do not be alarmed. What you have just experienced was a metaphor. It was not 
the real thing. (The real thing comes later.)

I use metaphors a lot in this book. A metaphor is a loose comparison drawn 
between something familiar (such as a Saturday morning laundry list) and 
something unfamiliar (such as a computer program). The idea is to anchor the 
unfamiliar in terms of the familiar so that when I begin tossing facts at you, 
you’ll have someplace comfortable to lay them down.

The most important thing for you to do right now is keep an open mind. If 
you know a little bit about computers or programming, don’t pick nits. Yes, 
there are important differences between a homemaker following a scribbled 
laundry list and a computer executing a program. I’ll mention those differences 
all in good time.

For now, it’s still Chapter 1. Take these initial metaphors on their own terms. 
Later, they’ll help a lot.

Assembly Language Programming As a Square Dance

Carol and I have a certain fondness for “called” dances, the most prevalent type 
being square dances. There are others, like New England contra dances, which 
are a lot like square dances but with better music. In a called dance, the caller 
person at the front of the hall calls out movements, and the dancers perform those 
movements. The music provides a beat, like the ticking of a clock. The sequence 
of movements taken together is the dance, and the dance usually has a name.

The first time Carol and I attended a contra dance, I was poleaxed: this was 
like assembly language programming! The caller called out “allemande left,” and 
we performed the movement known as “allemande left.” The caller called out 
“forward and back,” and we executed the “forward and back” movement. The 
caller called out “box the gnat,” and, well, we boxed the gnat. (I am not mak-
ing this up!) There are a reasonable number of movements, and to be good at 
that sort of dancing, you have to memorize them all by name. Otherwise, if the 
caller calls a movement that you don’t know, the dance might stumble or grind 
to a halt. (Bluescreen!)
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At its deepest level, a computer understands a collection of individual oper-
ations called instructions. These perform arithmetic, execute logic like AND and 
OR, move data around, and do many other things. Each instruction is performed 
inside the CPU chip. Just as a set of dance movements are the individual atoms 
of motion making up a square dance, instructions are the atoms of a computer 
program. The program is like the dance as a whole: a sequence of instructions 
executed in order. The couples taking part in the dance execute the dance/
program as the caller moves down the list of movements, calling out each one 
in turn. The couples, then, are the computer on which the dance runs.

That’s about as far as the square dance metaphor goes. Once you get the 
knack of assembly language, hey, go take square dance or contra dance lessons 
somewhere and see if you don’t come to the same conclusion that I did.

Assembly Language Programming As a Board Game

Board games were a really big deal when I was a kid, when board games were 
actually printed on a species of board. (OK, cardboard.) Monopoly was one 
that almost everybody had. There was a sort of pathway around the edge of the 
board divided into squares. You had a game piece that advanced from square to 
square according to dice throws, and when your piece landed on a square, you 
could do one of several things: buy property that hadn’t been bought yet, pay 
rent on property owned by other players, pull a card from the Chance stack, 
or—eek!—go to jail. You had a pile of Monopoly money to spend, and when 
another player had to pay rent, you got more.

The specifics of the Monopoly game aren’t important here. What matters is 
that you progress through a series of steps, and at each step, something happens. 
Your pile of money grows or shrinks. Assembly language is a little like that: 
a program is like the game board. Each step in the program does something. 
There are places where you can store numbers. The numbers change as you 
move through the program.

Now that you’re thinking in terms of board games, take a look at Figure 1.1. 
What I’ve drawn is actually a fair approximation of assembly language as it 
was used on some of our simpler computers 50 or 60 years ago. The column 
marked “Program Instructions” is the main path around the edge of the board, 
of which only a portion can be shown here. This is the assembly language com-
puter program, the actual series of steps and tests that, when executed, causes 
the computer to do something useful. Setting up this series of program instruc-
tions is what programming in assembly language actually is.
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Everything else is odds and ends in the middle of the board that serve the game 
in progress. Most of these are storage locations that contain your data. You’re 
probably noticing (perhaps with sagging spirits) that there are a lot of numbers 
involved. (They’re weird numbers, too. What, for example, does “004B” mean? 
I deal with that issue in Chapter 2, “Alien Bases.”) I’m sorry, but that’s simply 
the way the game is played. Assembly language, at its deepest level, is nothing 
but numbers, and if you hate numbers the way most people hate anchovies, 
you’re going to have a rough time of it. (I like anchovies, which is part of my 
legend. Learn to like numbers. They’re not as salty.) Higher-level programming 
languages such as Pascal or Python disguise the numbers by treating them sym-
bolically. But assembly language, well, it’s just you and the numbers.

I should caution you that the Game of Assembly Language in Figure 1.1 repre-
sents no real computer processor, like the Intel Core i5. Also, I’ve made the names 
of instructions more clearly understandable than the names of the instructions 
in Intel assembly language actually are. In the real world, instruction names 

Figure 1.1:  The Game of Assembly Language
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are typically short things like LAHF, STC, INC, SHRX, and other crypticisms 
that cannot be understood without considerable explanation. We’re easing into 
this stuff sidewise, and in this chapter I have to sugarcoat certain things a little 
to draw the metaphors clearly.

Code and Data
Like most board games, the assembly language board game consists of two 
broad categories of elements: game steps and places to store things. The “game 
steps” are the steps and tests I’ve been speaking of all along. The places to store 
things are just that: cubbyholes into which you can place numbers, with the 
confidence that those numbers will remain where you put them until you take 
them out or change them somehow.

In programming terms, the game steps are called code, and the numbers in 
their cubbyholes (as distinct from the cubbyholes themselves) are called data. 
The cubbyholes themselves are usually called storage. (The difference between 
the places you store information and the information you store in them is cru-
cial. Don’t confuse them.) Consider an instruction in the Game of Assembly 
Language that says ADD 32 to A. An ADD instruction in the code alters a data 
value stored in a cubbyhole named Register A.

Code and data are two very different kinds of critters, but they interact in 
ways that make the game interesting. The code includes steps that place data 
into storage (MOVE instructions) and steps that alter data that is already in 
storage (INCREMENT and DECREMENT instructions, and ADD instructions, 
among others). Most of the time you’ll think of code as being the master of data, 
in that the code writes data values into storage. Data does influence code as 
well, however. Among the tests that the code makes are tests that examine data 
in storage, the COMPARE instructions. If a given data value exists in storage, 
the code may do one thing; if that value does not exist in storage, the code will 
do something else, as in the JUMP BACK and JUMP AHEAD instructions.

The short block of instructions marked PROCEDURE is a detour off the main 
stream of instructions. At any point in the program you can duck out into the 
procedure, perform its steps and tests, and then return to the very place from 
which you left. This allows a sequence of steps and tests that is generally use-
ful and used frequently to exist in only one place rather than exist as separate 
copies everywhere it’s needed.

Addresses
Another critical concept lies in the funny numbers at the left side of the program 
step locations and data locations. Each number is unique, in that a location tagged 
with that number appears only once inside the computer. This location is called 
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an address. Data is stored and retrieved by specifying the data’s address in the 
machine. Procedures are called by specifying the address at which they begin.

The little box (which is also a storage location) marked “Program Counter” 
keeps the address of the next instruction to be performed. The number inside 
the program counter is increased by one (incremented) each time an instruction 
is performed unless the instruction tells the program counter to do something else. 
For example, notice the JUMP BACK 9 instruction at address 004B. When this 
instruction is performed, the program counter will “back up” by nine locations. 
This is analogous to the “go back three spaces” concept in most board games.

Metaphor Check!
That’s about as much explanation of the Game of Assembly Language as I’m 
going to offer for now. This is still Chapter 1, and we’re still in metaphor territory. 
People who have had some exposure to computers will recognize and under-
stand some of what Figure 1.1 is doing. People with no exposure to computer 
innards at all shouldn’t feel left behind for being utterly lost. I created the Game 
of Assembly Language solely to put across the following points:

■■ The individual steps are very simple. One single instruction rarely does more 
than move a single value from one storage cubbyhole to another, perform 
very elementary arithmetic like addition or subtraction, or compare the 
value contained in one storage cubbyhole to a value contained in another. 
This is good news, because it allows you to concentrate on the simple task 
accomplished by a single instruction without being overwhelmed by 
complexity. The bad news, however, is the next point.

■■ It takes a lot of steps to do anything useful. You can often write a useful 
program in such languages as Pascal or BASIC in five or six lines. You 
can actually create useful programs in visual programming systems like 
Visual Basic, Delphi, or Lazarus without writing any code at all. (The code 
is still there . . . but the code is “canned” and all you’re really doing is 
choosing which chunks of canned code in a collection of many such chunks 
will run.) A useful assembly language program cannot be implemented 
in fewer than about 50 lines, and anything challenging takes hundreds or 
thousands—or tens of thousands—of lines. The skill of assembly language 
programming lies in structuring these hundreds or thousands of instruc-
tions so that the program both operates correctly and can still be read and 
understood by other programmers—and yourself—six months later.

■■ The key to assembly language is understanding memory addresses. In such lan-
guages as Pascal and BASIC, the compiler takes care of where something 
is located—you simply have to give that something a symbolic name and 
call it by that name whenever you want to look at it or change it.  




