

x64 Assembly Language
Step-by-Step

4TH Edition

x64 Assembly Language
Step-by-Step

Programming with Linux®

4TH Edition

Jeff Duntemann

Copyright © 2024 by Jeff Duntemann. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394155248 (Hardback), 9781394155545 (epdf), 9781394155255 (epub)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries and may not be used without written permission.
Linux is a registered trademark of Linus Torvalds. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materi-
als. The advice and strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Further, readers should be aware that websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Cus-
tomer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader sup-
port team at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at www
.wiley.com.

Library of Congress Control Number: 2023944290

Cover image: © CSA-Printstocks/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com
http://www.wiley.com

To the eternal memory of my father,

Frank W. Duntemann, Engineer

1922–1978

Who said, “When you build ’em right, they fly.”

You did. And I do.

vii

Jeff Duntemann has had his technical nonfiction and science-fiction work
professionally published since 1974. He worked as a programmer for Xerox
Corporation and as a technical editor for Ziff-Davis Publishing and Borland
International. He launched and edited two print magazines for programmers
and has 20 technical books to his credit, including the bestselling Assembly
Language Step-by-Step. He wrote the “Structured Programming” column in Dr.
Dobb’s Journal for four years and has published dozens of technical articles in
many magazines. He has a longstanding interest in “strong” artificial intelli-
gence, and most of his fiction explores the possibilities and consequences of
strong AI. His other interests include electronics and amateur radio (callsign
K7JPD), telescopes, and kites. Jeff lives in Phoenix, Arizona, with his wife Carol.

About the Technical Editor

David Stafford is an enthusiast of low-level programming in assembly lan-
guage, from 8-bit processors to modern 64-bit multicore architectures. He lives
in the Seattle area and works in the field of artificial intelligence for robotics.

About the Author

ix

Thanks are due to a number of people who helped me out as this edition took
shape, in various ways. First, thanks to Jim Minatel and Pete Gaughan of Wiley,
who got the project underway and made sure it went to completion. Also thanks
to David Stafford, who acted as technical editor and provided a constant stream
of invaluable advice.

The event shocked me to the core, but antony-jr of GitHub managed to cre-
ate a working Linux appimage of the quirky and ancient but very accessible
Insight debugger, which was pulled from Linux repositories soon after the third
edition of this book hit print in 2009. A very big thanks to him for what was
likely a very peculiar project. You can find his Insight appimage here: https://
appimage.github.io/Insight.

Abundant thanks also to Dmitriy Manushin, who created SASM, a free assem-
bly language IDE targeted at beginners: https://dman95.github.io/SASM/
english.html.

When I ran into a weirdness in glibc, my wizard crew on Contrapositive
Diary helped me figure it out:

■■ Jim Strickland

■■ Bill Buhler

■■ Jason Bucata

■■ Jonathan O’Neal

■■ Bruce and Keith (last names not given, and that’s OK—the advice
was golden)

Finally, and as always, a toast to Carol for her support and sacramental friend-
ship that have enlivened me now for 54 years and enabled me to take on dif-
ficult projects like this and see them through to the end, no matter how nuts
they made me along the way!

Acknowledgments

https://appimage.github.io/Insight
https://appimage.github.io/Insight
https://dman95.github.io/SASM/english.html
https://dman95.github.io/SASM/english.html

xi

Contents at a Glance

Introduction xxix

Chapter 1	 It’s All in the Plan� 1

Chapter 2	 Alien Bases� 11

Chapter 3	 Lifting the Hood� 41

Chapter 4	 Location, Location, Location� 73

Chapter 5	 The Right to Assemble� 103

Chapter 6	 A Place to Stand, with Access to Tools� 143

Chapter 7	 Following Your Instructions� 175

Chapter 8	 Our Object All Sublime� 213

Chapter 9	 Bits, Flags, Branches, and Tables� 251

Chapter 10	 Dividing and Conquering� 299

Chapter 11	 Strings and Things� 377

Chapter 12	 Heading Out to C� 423

Conclusion: Not the End, But Only the Beginning� 489

Appendix A	 The Return of the Insight Debugger� 493

Appendix B	 Partial x64 Instruction Reference� 501

Appendix C	 Character Set Charts� 575

Index 579

xiii

Contents

Introduction� xxix

Chapter 1	 It’s All in the Plan� 1
Another Pleasant Valley Saturday� 1

Steps and Tests� 3
More Than Two Ways?� 3
Computers Think Like Us� 4

Had This Been the Real Thing . . .� 5
Assembly Language Programming As a Square Dance� 5
Assembly Language Programming As a Board Game� 6

Code and Data� 8
Addresses� 8
Metaphor Check!� 9

Chapter 2	 Alien Bases� 11
The Return of the New Math Monster� 11

Counting in Martian� 12
Dissecting a Martian Number� 14
The Essence of a Number Base� 16

Octal: How the Grinch Stole Eight and Nine� 16
Who Stole Eight and Nine?� 17

Hexadecimal: Solving the Digit Shortage� 20
From Hex to Decimal and from Decimal to Hex� 24

From Hex to Decimal� 24
From Decimal to Hex� 25

Practice. Practice! PRACTICE!� 27
Arithmetic in Hex� 28

xiv	 Contents

Columns and Carries� 30
Subtraction and Borrows� 31
Borrows Across Multiple Columns� 33
What’s the Point?� 33

Binary� 34
Values in Binary� 36
Why Binary?� 38

Hexadecimal as Shorthand for Binary� 38
Prepare to Compute� 40

Chapter 3	 Lifting the Hood� 41
RAXie, We Hardly Knew Ye� 41

Gus to the Rescue� 42
Switches, Transistors, and Memory� 43

One If by Land...� 43
Transistor Switches� 44
The Incredible Shrinking Bit� 46
Random Access� 47
Memory Access Time� 49
Bytes, Words, Double Words, and Quad Words� 50
Pretty Chips All in a Row� 51

The Shop Supervisor and the Assembly Line� 54
Talking to Memory� 55
Riding the Data Bus� 56
The Shop Supervisor’s Pockets� 57
The Assembly Line� 58

The Box That Follows a Plan� 58
Fetch and Execute� 60
The Supervisor’s Innards� 61
Changing Course� 62

What vs. How: Architecture and Microarchitecture� 63
Evolving Architectures� 64
The Secret Machinery in the Basement� 65

Enter the Plant Manager� 67
Operating Systems: The Corner Office� 67
BIOS: Software, Just Not as Soft� 68
Multitasking Magic� 68
Promotion to Kernel� 70
The Core Explosion� 70
The Plan� 72

Chapter 4	 Location, Location, Location� 73
The Joy of Memory Models� 73

16 Bits’ll Buy You 64 KB� 75

	 Contents	 xv

The Nature of a Megabyte� 78
Backward Compatibility and Virtual 86 Mode� 79
16-Bit Blinders� 79

The Nature of Segments� 80
A Horizon, Not a Place� 84
Making 20-Bit Addresses Out of 16-Bit Registers� 84

Segment Registers� 87
Segment Registers and x64� 88
General-Purpose Registers� 88
Register Halves� 91
The Instruction Pointer� 92
The Flags Register� 94
Math Coprocessors and Their Registers� 94

The Four Major Assembly Programming Models� 95
Real-Mode Flat Model� 95
Real-Mode Segmented Model� 97
32-Bit Protected Mode Flat Model� 99

64-Bit Long Mode� 101

Chapter 5	 The Right to Assemble� 103
The Nine and Sixty Ways to Code� 103
Files and What’s Inside Them� 104

Binary vs. Text Files� 105
Looking at Binary File Internals with the GHex Hex Editor� 106
Interpreting Raw Data� 110
“Endianness”� 111

Text In, Code Out� 115
Assembly Language� 116
Comments� 118
Beware “Write-Only” Source Code!� 119
Object Code, Linkers, and Libraries� 120
Relocatability� 123

The Assembly Language Development Process� 123
The Discipline of Working Directories� 125
Editing the Source Code File� 126
Assembling the Source Code File� 126
Assembler Errors� 127
Back to the Editor� 128
Assembler Warnings� 129

Linking the Object Code File� 130
Linker Errors� 131
Testing the EXE File� 131
Errors vs. Bugs� 132

xvi	 Contents

Are We There Yet?� 133
Debuggers and Debugging� 133

Taking a Trip Down Assembly Lane� 134
Installing the Software� 134
Step 1: Edit the Program in an Editor� 137
Step 2: Assemble the Program with NASM� 138
Step 3: Link the Program with ld� 140
Step 4: Test the Executable File� 141
Step 5: Watch It Run in the Debugger� 141

Chapter 6	 A Place to Stand, with Access to Tools� 143
Integrated Development Environments� 143
Introducing SASM� 146

Configuring SASM� 146
SASM’s Fonts� 147
Using a Compiler to Link� 148
A Quick Tour of SASM� 149
SASM’s Editor� 152
What SASM Demands of Your Code� 152

Linux and Terminals� 153
The Linux Console� 153
Character Encoding in Konsole� 154
The Three Standard Unix Files� 156
I/O Redirection� 158
Simple Text Filters� 159
Using Standard Input and Standard Output from Inside SASM� 161
Terminal Control with Escape Sequences� 161
So Why Not GUI Apps?� 163

Using Linux Make� 164
Dependencies� 165
When a File Is Up-to-Date� 167
Chains of Dependencies� 167
Invoking Make� 169
Creating a Custom Key Binding for Make� 170
Using Touch to Force a Build� 172

Debugging with SASM� 172
Pick up Your Tools. . .� 174

Chapter 7	 Following Your Instructions� 175
Build Yourself a Sandbox� 176

A Minimal NASM Program for SASM� 176
Instructions and Their Operands� 178
Source and Destination Operands� 178

	 Contents	 xvii

Immediate Data� 179
Register Data� 181
Memory Data and Effective Addresses� 184
Confusing Data and Its Address� 185
The Size of Memory Data� 185
The Bad Old Days� 186

Rally Round the Flags, Boys!� 186
Flag Etiquette� 190
Watching Flags from SASM� 190
Adding and Subtracting One with INC and DEC� 191
How Flags Change Program Execution� 192
How to Inspect Variables in SASM� 194

Signed and Unsigned Values� 195
Two’s Complement and NEG� 196
Sign Extension and MOVSX� 198

Implicit Operands and MUL� 200
MUL and the Carry Flag� 202
Unsigned Division with DIV� 203
MUL and DIV Are Slowpokes� 204

Reading and Using an Assembly Language Reference� 205
Memory Joggers for Complex Memories� 205
An Assembly Language Reference for Beginners� 206
Flags� 207

NEG Negate (Two’s Complement; i.e., Multiply by −1)� 208
Flags Affected� 208
Legal Forms� 208
Examples� 208
Notes� 208
Legal Forms� 209
Operand Symbols� 209
Examples� 210
Notes� 210
What’s Not Here. . .� 210

Chapter 8	 Our Object All Sublime� 213
The Bones of an Assembly Language Program� 213

The Initial Comment Block� 215
The .data Section� 216
The .bss Section� 216
The .text Section� 217
Labels� 217
Variables for Initialized Data� 218
String Variables� 219

xviii	 Contents

Deriving String Length with EQU and $� 221
Last In, First Out via the Stack� 223

Five Hundred Plates an Hour� 223
Stacking Things Upside Down� 225
Push-y Instructions� 226
POP Goes the Opcode� 227
PUSHA and POPA Are Gone� 228
Pushing and Popping in Detail� 229
Storage for the Short Term� 231

Using Linux Kernel Services Through Syscall� 231
X64 Kernel Services via the SYSCALL Instruction� 232
ABI vs. API?� 232
The ABI’s Register Parameter Scheme� 233
Exiting a Program via SYSCALL� 234
Which Registers Are Trashed by SysCall?� 235

Designing a Nontrivial Program� 235
Defining the Problem� 235
Starting with Pseudocode� 236
Successive Refinement� 237
Those Inevitable “Whoops!” Moments� 241
Scanning a Buffer� 242
“Off by One” Errors� 244
From Pseudocode to Assembly Code� 246
The SASM Output Window Gotcha� 248

Going Further� 248

Chapter 9	 Bits, Flags, Branches, and Tables� 251
Bits Is Bits (and Bytes Is Bits)� 251

Bit Numbering� 252
“It’s the Logical Thing to Do, Jim. . .”� 252
The AND Instruction� 253
Masking Out Bits� 254
The OR Instruction� 255
The XOR Instruction� 256
The NOT Instruction� 257
Segment Registers Don’t Respond to Logic!� 258

Shifting Bits� 258
Shift by What?� 258
How Bit Shifting Works� 259
Bumping Bits into the Carry Flag� 260
The Rotate Instructions� 260
Rotating Bits Through the Carry Flag� 261
Setting a Known Value into the Carry Flag� 262

	 Contents	 xix

Bit-Bashing in Action� 262
Splitting a Byte into Two Nybbles� 264
Shifting the High Nybble into the Low Nybble� 265
Using a Lookup Table� 266
Multiplying by Shifting and Adding� 267

Flags, Tests, and Branches� 270
Unconditional Jumps� 271
Conditional Jumps� 271
Jumping on the Absence of a Condition� 272
Flags� 273
Comparisons with CMP� 274
A Jungle of Jump Instructions� 275
“Greater Than” Versus “Above”� 275
Looking for 1-Bits with TEST� 277
Looking for 0-Bits with BT� 279

X64 Long Mode Memory Addressing in Detail� 279
Effective Address Calculations� 281
Displacements� 282
The x64 Displacement Size Problem� 283
Base Addressing� 283
Base + Displacement Addressing� 283
Base + Index Addressing� 284
Index X Scale + Displacement Addressing� 285
Other Addressing Schemes� 287
LEA: The Top-Secret Math Machine� 289

Character Table Translation� 290
Translation Tables� 291
Translating with MOV or with XLAT� 293

Tables Instead of Calculations� 298

Chapter 10	 Dividing and Conquering� 299
Boxes within Boxes� 300

Procedures as Boxes for Code� 301
Calling and Returning� 309

Calls Within Calls� 311
The Dangers of Accidental Recursion� 313
A Flag Etiquette Bug to Beware Of� 314
Procedures and the Data They Need� 315
Saving the Caller’s Registers� 316
Preserving Registers Across Linux System Calls� 317
PUSHAD and POPAD Are Gone� 319
Local Data� 321
Placing Constant Data in Procedure Definitions� 322

xx	 Contents

More Table Tricks� 323
Local Labels and the Lengths of Jumps� 325

“Forcing” Local Label Access� 328
Short, Near, and Far Jumps� 329

Building External Procedure Libraries� 330
When Tools Reach Their Limits� 330
Using Include Files in SASM� 331
Where SASM’s Include Files Must Be Stored� 337
The Best Way to Create an Include File Library� 338
Separate Assembly and Modules� 339
Global and External Declarations� 339
The Mechanics of Globals and Externals� 342
Linking Libraries into Your Programs� 351
The Dangers of Too Many Procedures and Too

Many Libraries� 352
The Art of Crafting Procedures� 352

Maintainability and Reuse� 353
Deciding What Should Be a Procedure� 354
Use Comment Headers!� 355

Simple Cursor Control in the Linux Console� 356
Console Control Cautions� 363

Creating and Using Macros� 364
The Mechanics of Macro Definition� 366
Defining Macros with Parameters� 371
The Mechanics of Invoking Macros� 372
Local labels Within Macros� 373
Macro Libraries as Include Files� 374
Macros vs. Procedures: Pros and Cons� 375

Chapter 11	 Strings and Things� 377
The Notion of an Assembly Language String� 378

Turning Your “String Sense” Inside-Out� 378
Source Strings and Destination Strings� 379
A Text Display Virtual Screen� 379

REP STOSB, the Software Machine Gun� 387
Machine-Gunning the Virtual Display� 388
Executing the STOSB Instruction� 389
STOSB and the Direction Flag DF� 390
Defining Lines in the Display Buffer� 391
Sending the Buffer to the Linux Console� 391

The Semiautomatic Weapon: STOSB Without REP� 392
Who Decrements RCX?� 392
The LOOP Instructions� 393
Displaying a Ruler on the Screen� 394
MUL Is Not IMUL� 395

	 Contents	 xxi

Ruler’s Lessons� 396
The Four Sizes of STOS� 396
Goodbye, BCD Math� 397

MOVSB: Fast Block Copies� 397
DF and Overlapping Block Moves� 398
Single-Stepping REP String Instructions� 401

Storing Data to Discontinuous Strings� 402
Displaying an ASCII Table� 402
Nested Instruction Loops� 404
Jumping When RCX Goes to 0� 405
Closing the Inner Loop� 406
Closing the Outer Loop� 407
Showchar Recap� 408

Command-Line Arguments, String Searches, and
the Linux Stack� 408

Displaying Command-Line Arguments from SASM� 408
String Searches with SCASB� 411
REPNE vs. REPE� 413
You Can’t Pass Command-Line Arguments to

Programs Within SASM� 413
The Stack, Its Structure, and How to Use It� 414

Accessing the Stack Directly� 417
Program Prologs and Epilogs� 419
Addressing Data on the Stack� 420
Don’t Pop!� 422

Chapter 12	 Heading Out to C� 423
What’s GNU?� 424

The Swiss Army Compiler� 425
Building Code the GNU Way� 425
SASM Uses GCC� 427
How to Use gcc in Assembly Work� 427
Why Not gas?� 428

Linking to the Standard C Library� 429
C Calling Conventions� 431
Callers, Callees, and Clobbers� 431
Setting Up a Stack Frame� 433
Destroying a Stack Frame in the Epilog� 434
Stack Alignment� 435
Characters Out Via puts()� 437

Formatted Text Output with printf()� 438
Passing Parameters to printf()� 440
Printf() Needs a Preceding 0 in RAX� 442
You Shall Have –No-Pie� 442

Data In with fgets() and scanf()� 442

xxii	 Contents

Using scanf() for Entry of Numeric Values� 445
Be a Linux Time Lord� 448

The C Library’s Time Machine� 449
Fetching time_t Values from the System Clock� 451
Converting a time_t Value to a Formatted String� 451
Generating Separate Local Time Values� 452
Making a Copy of glibc’s tm Struct with MOVSD� 453

Understanding AT&T Instruction Mnemonics� 456
AT&T Mnemonic Conventions� 457
AT&T Memory Reference Syntax� 459

Generating Random Numbers� 460
Seeding the Generator with srand()� 461
Generating Pseudorandom Numbers� 461
Some Bits Are More Random Than Others� 467
Calls to Addresses in Registers� 469
Using puts() to Send a Naked Linefeed to the Console� 470
How to Pass a libc Function More Than Six Parameters� 470

How C Sees Command-Line Arguments� 472
Simple File I/O� 474

Converting Strings into Numbers with sscanf()� 475
Creating and Opening Files� 477
Reading Text from Files with fgets()� 478
Writing Text to Files with fprintf()� 481
Notes on Gathering Your Procedures into Libraries� 482

Conclusion: Not the End, But Only the Beginning� 489

Appendix A	 The Return of the Insight Debugger� 493
Insight’s Shortcomings� 494
Opening a Program Under Insight� 495
Setting Command-Line Arguments with Insight� 496
Running and Stepping a Program� 496
The Memory Window� 497
Showing the Stack in Insight’s Memory View� 498
Examining the Stack with Insight’s Memory View� 498
Learn gdb!� 500

Appendix B	 Partial x64 Instruction Reference� 501
What’s Been Removed from x64� 502
Flag Results� 502
Size Specifiers� 503
Instruction Index� 505
ADC: Arithmetic Addition with Carry� 507

Flags Affected� 507

	 Contents	 xxiii

Legal Forms� 507
Examples� 507
Notes� 507

ADD: Arithmetic Addition� 509
Flags Affected� 509
Legal Forms� 509
Examples� 509
Notes� 509

AND: Logical AND� 511
Flags Affected� 511
Legal Forms� 511
Examples� 511
Notes� 511

BT: Bit Test� 513
Flags Affected� 513
Legal Forms� 513
Examples� 513
Notes� 513

CALL: Call Procedure� 515
Flags Affected� 515
Legal Forms� 515
Examples� 515
Notes� 515

CLC: Clear Carry Flag (CF)� 517
Flags Affected� 517
Legal Forms� 517
Examples� 517
Notes� 517

CLD: Clear Direction Flag (DF)� 518
Flags Affected� 518
Legal Forms� 518
Examples� 518
Notes� 518

CMP: Arithmetic Comparison� 519
Flags Affected� 519
Legal Forms� 519
Examples� 519
Notes� 519

DEC: Decrement Operand� 521
Flags Affected� 521
Legal Forms� 521
Examples� 521
Notes� 521

xxiv	 Contents

DIV: Unsigned Integer Division� 522
Flags Affected� 522
Legal Forms� 522
Examples� 522
Notes� 522

INC: Increment Operand� 524
Flags Affected� 524
Legal Forms� 524
Examples� 524
Notes� 524

J??: Jump If Condition Is Met� 525
Flags Affected� 525
Examples� 525
Notes� 525

JECXZ: Jump if ECX=0� 527
Flags Affected� 527
Legal Forms� 527
Examples� 527
Notes� 527

JRCXZ: Jump If RCX=0� 528
Flags Affected� 528
Legal Forms� 528
Examples� 528
Notes� 528

JMP: Unconditional Jump� 529
Flags Affected� 529
Legal Forms� 529
Examples� 529
Notes� 529

LEA: Load Effective Address� 531
Flags Affected� 531
Legal Forms� 531
Examples� 531
Notes� 531

LOOP: Loop Until CX/ECX/RCX=0� 532
Flags Affected� 532
Legal Forms� 532
Examples� 532
Notes� 532

LOOPNZ/LOOPNE: Loop Until CX/ECX/RCX=0 and ZF=0� 534
Flags Affected� 534
Legal Forms� 534

	 Contents	 xxv

Examples� 534
Notes� 534

LOOPZ/LOOPE: Loop Until CX/ECX/RCX=0 and ZF=1� 535
Flags Affected� 535
Legal Forms� 535
Examples� 535
Notes� 535

MOV: Copy Right Operand into Left Operand� 536
Flags Affected� 536
Legal Forms� 536
Examples� 536
Notes� 536

MOVS: Move String� 538
Flags Affected� 538
Legal Forms� 538
Examples� 538
Notes� 538

MOVSX: Copy with Sign Extension� 540
Flags Affected� 540
Legal Forms� 540
Examples� 540
Notes� 540

MUL: Unsigned Integer Multiplication� 542
Flags Affected� 542
Legal Forms� 542
Examples� 542
Notes� 542

NEG: Negate (Two’s Complement; i.e., Multiply by −1)� 544
Flags Affected� 544
Legal Forms� 544
Examples� 544
Notes� 544

NOP: No Operation� 546
Flags Affected� 546
Legal Forms� 546
Examples� 546
Notes� 546

NOT: Logical NOT (One’s Complement)� 547
Flags Affected� 547
Legal Forms� 547
Examples� 547
Notes� 547

xxvi	 Contents

OR: Logical OR� 548
Flags Affected� 548
Legal Forms� 548
Examples� 548
Notes� 548

POP: Copy Top of Stack into Operand� 550
Flags Affected� 550
Legal Forms� 550
Examples� 550
Notes� 550

POPF/D/Q: Copy Top of Stack into Flags Register� 552
Flags Affected� 552
Legal Forms� 552
Examples� 552
Notes� 552

PUSH: Push Operand onto Top of Stack� 553
Flags Affected� 553
Legal Forms� 553
Examples� 553
Notes� 553

PUSHF/D/Q: Push Flags Onto the Stack� 555
Flags Affected� 555
Legal Forms� 555
Examples� 555
Notes� 555

RET: Return from Procedure� 556
Flags Affected� 556
Legal Forms� 556
Examples� 556
Notes� 556

ROL/ROR: Rotate Left/Rotate Right� 558
Flags Affected� 558
Legal Forms� 558
Examples� 558
Notes� 558

SBB: Arithmetic Subtraction with Borrow� 560
Flags Affected� 560
Legal Forms� 560
Examples� 560
Notes� 560

SHL/SHR: Shift Left/Shift Right� 562
Flags Affected� 562
Legal Forms� 562
Examples� 562

Contents	 xxvii

Notes 562
STC: Set Carry Flag (CF)� 564

Flags Affected� 564
Legal Forms� 564
Examples 564
Notes 564

STD: Set Direction Flag (DF)� 565
Flags Affected� 565
Legal Forms� 565
Examples 565
Notes 565

STOS/B/W/D/Q: Store String� 566
Flags Affected� 566
Legal Forms� 566
Examples 566
Notes 566

SUB: Arithmetic Subtraction� 568
Flags Affected� 568
Legal Forms� 568
Examples 568
Notes 569

SYSCALL: Fast System Call into Linux� 570
Flags Affected� 570
Legal Forms� 570
Examples 570
Notes 570

XCHG: Exchange Operands� 571
Flags Affected� 571
Legal Forms� 571
Examples 571
Notes 571

XLAT: Translate Byte Via Table� 572
Flags Affected� 572
Legal Forms� 572
Examples 572
Notes 572

XOR: Exclusive OR� 573
Flags Affected� 573
Legal Forms� 573
Examples 573
Notes 573

Appendix C	 Character Set Charts� 575

Index 579

xxix

Introduction

“Why Would You Want to Do That?”

It was 1985, and I was in a chartered bus in New York City, heading for a
press reception with a bunch of other restless media egomaniacs. I was only
beginning my tech journalist career (as technical editor for PC Tech Journal), and
my first book was still months in the future. I happened to be sitting next to
an established programming writer/guru, with whom I was impressed and to
whom I was babbling about one thing or another. I would like to eliminate this
statement; it adds little to the book, and as annoying as he is, even though we
don’t name him, I now understand why he’s so annoying: He lives and works
in a completely different culture than I do.

During our chat, I happened to let slip that I was a Turbo Pascal fanatic, and
what I really wanted to do was learn how to write Turbo Pascal programs that
made use of the brand new Microsoft Windows user interface. He wrinkled his
nose and grimaced wryly, before speaking the Infamous Question:

“Why would you want to do that?”
I had never heard the question before (though I would hear it many times

thereafter), and it took me aback. Why? Because, well, because. . .I wanted to
know how it worked.

“Heh. That’s what C is for.”
Further discussion got me nowhere in a Pascal direction. But some probing

led me to understand that you couldn’t write Windows apps in Turbo Pascal. It
was impossible. Or. . .the programming writer/guru didn’t know how. Maybe
both. I never learned the truth as it stood in 1985. (Delphi answered the question
once and for all in 1995.) But I did learn the meaning of the Infamous Question.

Note well: When somebody asks you, “Why would you want to do that?”
what it really means is this: “You’ve asked me how to do something that is either

xxx	 Introduction

impossible using tools that I favor or completely outside my experience, but
I don’t want to lose face by admitting it. So. . .how ’bout those Blackhawks?”

I heard it again and again over the years:

Q: How can I set up a C string so that I can read its length without scanning it?

A: Why would you want to do that?

Q: How can I write an assembly language subroutine callable from Turbo Pascal?

A: Why would you want to do that?

Q: How can I write Windows apps in assembly language?

A: Why would you want to do that?

You get the idea. The answer to the Infamous Question is always the same,
and if the weasels ever ask it of you, snap back as quickly as possible: because
I want to know how it works.

That is a completely sufficient answer. It’s the answer I’ve used every single
time, except for one occasion a considerable number of years ago, when I put
forth that I wanted to write a book that taught people how to program in assem-
bly language as their first experience in programming.

Q: Good grief, why would you want to do that?

A: Because it’s the best way there is to build the skills required to understand
how all the rest of the programming universe works.

Being a programmer is one thing above all else: It is understanding how things
work. Learning to be a programmer, furthermore, is almost entirely a process of
learning how things work. This can be done at various levels, depending on the
tools you’re using. If you’re programming in Visual Basic, you have to under-
stand how certain things work, but those things are by and large confined to
Visual Basic itself. A great deal of machinery is hidden by the layer that Visual
Basic places between the programmer and the computer. (The same is true of
Delphi, Lazarus, Java, Python, and many other very high-level programming
environments.) If you’re using a C compiler, you’re a lot closer to the machine,
so you see a lot more of that machinery—and must, therefore, understand how
it works to be able to use it. However, quite a bit remains hidden, even from
the hardened C programmer.

If, on the other hand, you’re working in assembly language, you’re as close
to the machine as you can get. Assembly language hides nothing, and withholds
no power. The flipside, of course, is that no magical layer between you and the
machine will absolve any ignorance and “take care of” things for you. If you
don’t understand how something works, you’re dead in the water—unless you
know enough to be able to figure it out on your own.

	 Introduction	 xxxi

That’s a key point: My goal in creating this book is not entirely to teach you
assembly language per se. If this book has a prime directive at all, it is to impart
a certain disciplined curiosity about the underlying machine, along with some
basic context from which you can begin to explore the machine at its very lowest
levels—that, and the confidence to give it your best shot. This is difficult stuff,
but it’s nothing you can’t master given some concentration, patience, and the
time it requires—which, I caution, may be considerable.

In truth, what I’m really teaching you here is how to learn.

What You’ll Need

To program as I intend to teach, you’re going to need a 64-bit Intel computer
running a 64-bit distribution of Linux. The one I used in preparing this book is
Linux Mint Cinnamon V20. 3 Una. “Una” here is a code name for this version
of Linux Mint. It’s nothing more than a short way of saying “Linux Mint 20.3.”
I recommend Mint; it’s thrown me fewer curves than any other distro I’ve ever
used—and I’ve used Linux here and there ever since it first appeared. I don’t
think which graphical shell you use matters a great deal. I like Cinnamon, but
you can use whatever you like or are familiar with.

You need to be reasonably proficient with Linux at the user level. I can’t
teach you how to install, configure, and run Linux in this book. If you’re not
already familiar with Linux, get a tutorial text and work through it. There are
many such online.

You’ll need a piece of free software called SASM, which is a simple interac-
tive development environment (IDE) for programming in assembly. Basically,
it consists of an editor, a build system, and a front end to the standard Linux
debugger gdb. You’ll also need a free assembler called NASM.

You don’t have to know how to download, install, and configure these tools
in advance because, at the appropriate times, I’ll cover all necessary tool instal-
lation and configuration.

Do note that other Unix implementations not based on the Linux kernel may
not function precisely the same way under the hood. BSD Unix uses different
conventions for making system calls, for example, and other Unix versions like
Solaris are outside my experience.

Remember that this book is about the x64 architecture. To the extent that x64
contains x86, I will also be teaching elements of the x86 architecture. The gulf
between 32-bit x86 and 64-bit x64 is a lot narrower than the gulf between 16-bit
x86 and 32-bit x86. If you already have a firm grounding in 32-bit x86, you’ll
breeze through most of this book at a gallop. If you can do that, cool—just please
remember that the book is for those who are just starting out in programming
on Intel CPUs.

xxxii	 Introduction

Also remember that this book is limited in size by its publisher: Paper, ink,
and cover stock aren’t free. That means I have to narrow the scope of what I
teach and explain within those limits. I wish I had the space to cover the AVX
math subsystem. I don’t. But I’ll bet that once you go through this book, you
can figure much of it out by yourself.

The Master Plan

This book starts at the beginning, and I mean the beginning. Maybe you’re already
there, or well past it. I respect that. I still think that it wouldn’t hurt to start at
the first chapter and read through all the chapters in order. Review is useful,
and hey—you may realize that you didn’t know quite as much as you thought
you did. (Happens to me all the time!)

But if time is at a premium, here’s the cheat sheet:

■■ If you already understand the fundamental ideas of computer program-
ming, skip Chapter 1.

■■ If you already understand the ideas behind number bases other than dec-
imal (especially hexadecimal and binary), skip Chapter 2.

■■ If you already have a grip on the nature of computer internals (memory,
CPU architectures, and so on) skip Chapter 3.

■■ If you already understand x64 memory addressing, skip Chapter 4.

■■ No. Stop. Scratch that. Even if you already understand x64 memory address-
ing, read Chapter 4.

The last bullet is there, and emphatic, for a reason: Assembly language program-
ming is about memory addressing. If you don’t understand memory addressing,
nothing else you learn in assembly will help you one. . .bit. So, don’t skip
Chapter 4 no matter what else you know or think you know. Start from there, and
see it through to the end. Memory addressing comes up regularly throughout
the rest of the book. It’s really the heart of the topic.

Load every example program, assemble each one, and run them all. Strive
to understand every single line in every program. Take nothing on faith. Fur-
thermore, don’t stop there. Change the example programs as things begin to
make sense to you. Try different approaches. Try things that I don’t mention. Be
audacious. Nay, go nuts—bits don’t have feelings, and the worst thing that can
happen is that Linux throws a segmentation fault, which may hurt your program
but does not hurt Linux. The only catch is that when you do try something,
strive to understand why it doesn’t work as clearly as you understand all the
other things that do. Single-step your way through a program in the SASM
debugger, even when the program works. Take notes.

	 Introduction	 xxxiii

That is, ultimately, what I’m after: to show you the way to understand what
every however distant corner of your machine is doing and how all its many
pieces work together. This doesn’t mean I’ll explain every corner of it myself—no
one will live long enough to do that because computing isn’t simple anymore—
but if you develop the discipline of patient research and experimentation, you
can probably work it out for yourself. Ultimately, that’s the only way to learn
it: by yourself. The guidance you find—in friends, on the Net, in books like
this—is only guidance and grease on the axles. You have to decide who’s to be
the master, you or the machine, and make it so. Assembly programmers are the
only programmers who can truly claim to be masters, which is a truth worth
meditating on.

A Note on Capitalization Conventions

Assembly language is peculiar among programming languages in that there is
no universal standard for case-sensitivity. In the C language, all identifiers are
case-sensitive, and I have seen assemblers that do not recognize differences in
case at all. NASM, the assembler I’m presenting in this book, is case-sensitive
only for programmer-defined identifiers. The instruction mnemonics and the
names of registers, however, are not case sensitive.

There are customs in the literature on assembly language, and one of those
customs is to treat CPU instruction mnemonics as uppercase in the chapter text
and in lowercase in source code files and code snippets interspersed within the
text. I’ll be following that custom here. Within discussion text, I’ll speak of MOV
and CALL and CMP. In example code, it will be mov and call and cmp. Code snip-
pets and listings will be in a monospace Courier-style font. When mentioned in
the text, registers will be in uppercase but not in the Courier font and lowercase
in snippets and listings.

There are two reasons for this:

■■ In text discussions, the mnemonics need to stand out. It’s too easy to lose
track of them amid a torrent of ordinary mixed-case words.

■■ To read and learn from existing documents and source code outside of
this one book, you need to be able to easily read assembly language whether
it’s in uppercase, lowercase, or mixed case. Getting comfortable with dif-
ferent ways of expressing the same things is important.

Remember Why You’re Here

Anyway. Wherever you choose to start the book, it’s time to get underway. Just
remember that whatever gets in your face, be it the weasels, the machine, or

xxxiv	 Introduction

your own inexperience, the thing to keep in the forefront of your mind is this:
You’re in it to figure out how it works.

Let’s go.

Jeff Duntemann
Scottsdale, Arizona
May 24, 2023

x64 Assembly Language
Step-by-Step

4TH Edition

C H A P T E R

1

1

Another Pleasant Valley Saturday

“Quick, Mike, get your sister and brother up; it’s past 7. Nicky’s got
Little League at 9, and Dione’s got ballet at 10. Give Max his heartworm
pill! (We’re out of them, Mom, remember?) Your father picked a great
weekend to go fishing Here, let me give you 10 bucks and go get
more pills at the vet’s My God, that’s right, Hank needed gas
money and left me broke. There’s a teller machine over by Kmart, and if
I go there, I can take that stupid toilet seat back and get the right one.
“I guess I’d better make a list”

It’s another Pleasant Valley Saturday, and 30-odd million suburban home-
makers sit down with a pencil and pad at the kitchen table to try to make
sense of a morning that would kill and pickle any lesser being. In her mind
she thinks of the dependencies and traces the route:

“Drop Nicky at Rand Park, go back to Dempster, and it’s about 10 minutes
to Golf Mill Mall. Do I have gas? I’d better check first—if not, stop at Del’s
Shell or I won’t make it to Milwaukee Avenue. Milk the teller machine at Golf
Mill; then cross the parking lot to Kmart to return the toilet seat that Hank

It’s All in the Plan
Understanding What Computers Really Do

2	 Chapter 1 ■ It’s All in the Plan

bought last weekend without checking what shape it was. Gotta remember
to throw the toilet seat in back of the van—write that at the top of the list.

“By then it’ll be half past, maybe later. Ballet is all the way down Green-
wood in Park Ridge. No left turn from Milwaukee—but there’s the sneak
path around behind the mall. I have to remember not to turn right onto
Milwaukee like I always do—jot that down. While I’m in Park Ridge, I can
check and see if Hank’s new glasses are in—should call, but they won’t even
be open until 9:30. Oh, and groceries—can do that while Dione dances. On
the way back I can cut over to Oakton and get the dog’s pills.”	

In about 90 seconds flat the list is complete:

■■ Throw toilet seat in van.

■■ Check gas––if empty, stop at Del’s Shell.

■■ Drop Nicky at Rand Park.

■■ Stop at Golf Mill teller machine.

■■ Return toilet seat at Kmart.

■■ Drop Dione at ballet (remember the sneak path to Greenwood).

■■ See if Hank’s glasses are at Pearle Vision—if they are, make double sure
they remembered the extra scratch coating.

■■ Get groceries at Jewel.

■■ Pick up Dione.

■■ Stop at vet for heartworm pills.

■■ Drop off groceries at home.

■■ If it’s time, pick up Nicky. If not, collapse for a few minutes; then pick
up Nicky.

■■ Collapse!

What we often call a “laundry list” (whether it involves laundry or not) is
the perfect metaphor for a computer program. Without realizing it, our intrepid
homemaker has written herself a computer program and then set out (with her-
self acting as the computer) to execute it and be done before noon.

Computer programming is nothing more than this: you the programmer
write a list of steps and tests. The computer then performs each step and test in
sequence. When the list of steps has been executed, the computer stops.

A computer program is a list of steps and tests, nothing more.

	 Chapter 1 ■ It’s All in the Plan	 3

Steps and Tests
Think for a moment about what I call a test in the preceding laundry list. A test
is the sort of either/or decision we make dozens or hundreds of times on even
the most placid of days, sometimes nearly without thinking about it.

Our homemaker performed a test when she jumped into the van to get started
on her adventure. She looked at the gas gauge. The gas gauge would tell her
one of two things: (1) she has enough gas, or (2) she doesn’t. If she has enough
gas, she takes a right and heads for Rand Park. If she doesn’t have enough gas,
she takes a left down to the corner and fills the tank at Del’s Shell. (Del takes
credit cards.) Then, with a full tank, she continues the program by making a
U-turn and heading for Rand Park.

In the abstract, a test consists of these two parts:

■■ First, you take a look at something that can go one of two ways.

■■ Then you do one of two things, depending on what you saw when you
took a look.

Toward the end of the program, our homemaker got home, took the groceries
out of the van, and looked at the clock. If it isn’t time to get Nicky back from
Little League, she has a moment to collapse on the couch in a nearly empty
house. If it is time to get Nicky, there’s no rest for the ragged: she sprints for
the van and heads back to Rand Park.

(Any guesses as to whether she really gets to rest when the program finishes
running?)

More Than Two Ways?
You might object, saying that many or most tests involve more than two alter-
natives. Sorry, you’re wrong––in every case. Read this twice: except for totally
impulsive or psychotic behavior, every human decision comes down to the
choice between two alternatives.

What you have to do is look a little more closely at what goes through your
mind when you make decisions. The next time you buzz down to Chow Now
for fast Chinese, observe yourself while you’re poring over the menu. The choice
might seem, at first, to be of one item out of 26 Cantonese main courses. Not
so—the choice, in fact, is between choosing one item and not choosing that one
item. Your eyes rest on chicken with cashews. Naw, too bland. That was a test.
You slide down to the next item. Chicken with black mushrooms. Hmmm, no,
had that last week. That was another test. Next item: kung pao chicken. Yeah,
that’s it! That was a third test.

4	 Chapter 1 ■ It’s All in the Plan

The choice was not among chicken with cashews, chicken with black mush-
rooms, and chicken with kung pao. Each dish had its moment, poised before
the critical eye of your mind, and you turned thumbs up or thumbs down on
it, individually. Eventually, one dish won, but it won in that same game of “to
eat or not to eat.”

Let me give you another example. Many of life’s most complicated decisions
come about because 99.99867 percent of us are not nudists. You’ve been there:
you’re standing in the clothes closet in your underwear, flipping through your
rack of pants. The tests come thick and fast. This one? No. This one? No. This
one? No. This one? Yeah. You pick a pair of blue pants, say. (It’s a Monday,
after all, and blue would seem an appropriate color.) Then you stumble over
to your sock drawer and take a look. Whoops, no blue socks. That was a test.
So you stumble back to the clothes closet, hang your blue pants back on the
pants rack, and start over. This one? No. This one? No. This one? Yeah. This
time it’s brown pants, and you toss them over your arm and head back to the
sock drawer to take another look. Nertz, out of brown socks, too. So it’s back
to the clothes closet

What you might consider a single decision, or perhaps two decisions inex-
tricably tangled (like picking pants and socks of the same color, given stock
on hand), is actually a series of small decisions, always binary in nature: pick
’em or don’t pick ’em. Find ’em or don’t find ’em. The Monday morning epi-
sode in the clothes closet is a good analogy of a programming structure called
a loop: you keep doing a series of things until you get it right, and then you
stop (assuming you’re not the kind of geek who wears blue socks with brown
pants). But whether you get everything right always comes down to a sequence
of simple either/or decisions.

Computers Think Like Us
I can almost hear what you’re thinking: “Sure, it’s a computer book, and he’s
trying to get me to think like a computer.” Not at all. Computers think like
us. We designed them; how else could they think? No, what I’m trying to do
is get you to take a long, hard look at how you think. We run on automatic for
so much of our lives that we literally do most of our thinking without really
thinking about it.

The best model for the logic of a computer program is the same logic we use
to plan and manage our daily affairs. No matter what we do, it comes down to a
matter of confronting two alternatives and picking one. What we might think of
as a single large and complicated decision is nothing more than a messy tangle
of many smaller decisions. The skill of looking at a complex decision and see-
ing all the little decisions in its tummy will serve you well in learning how to

	 Chapter 1 ■ It’s All in the Plan	 5

program. Observe yourself the next time you have to decide something. Count
up the little decisions that make up the big one. You’ll be surprised.

And, surprise! You’ll be a programmer.

Had This Been the Real Thing . . .

Do not be alarmed. What you have just experienced was a metaphor. It was not
the real thing. (The real thing comes later.)

I use metaphors a lot in this book. A metaphor is a loose comparison drawn
between something familiar (such as a Saturday morning laundry list) and
something unfamiliar (such as a computer program). The idea is to anchor the
unfamiliar in terms of the familiar so that when I begin tossing facts at you,
you’ll have someplace comfortable to lay them down.

The most important thing for you to do right now is keep an open mind. If
you know a little bit about computers or programming, don’t pick nits. Yes,
there are important differences between a homemaker following a scribbled
laundry list and a computer executing a program. I’ll mention those differences
all in good time.

For now, it’s still Chapter 1. Take these initial metaphors on their own terms.
Later, they’ll help a lot.

Assembly Language Programming As a Square Dance

Carol and I have a certain fondness for “called” dances, the most prevalent type
being square dances. There are others, like New England contra dances, which
are a lot like square dances but with better music. In a called dance, the caller
person at the front of the hall calls out movements, and the dancers perform those
movements. The music provides a beat, like the ticking of a clock. The sequence
of movements taken together is the dance, and the dance usually has a name.

The first time Carol and I attended a contra dance, I was poleaxed: this was
like assembly language programming! The caller called out “allemande left,” and
we performed the movement known as “allemande left.” The caller called out
“forward and back,” and we executed the “forward and back” movement. The
caller called out “box the gnat,” and, well, we boxed the gnat. (I am not mak-
ing this up!) There are a reasonable number of movements, and to be good at
that sort of dancing, you have to memorize them all by name. Otherwise, if the
caller calls a movement that you don’t know, the dance might stumble or grind
to a halt. (Bluescreen!)

6	 Chapter 1 ■ It’s All in the Plan

At its deepest level, a computer understands a collection of individual oper-
ations called instructions. These perform arithmetic, execute logic like AND and
OR, move data around, and do many other things. Each instruction is performed
inside the CPU chip. Just as a set of dance movements are the individual atoms
of motion making up a square dance, instructions are the atoms of a computer
program. The program is like the dance as a whole: a sequence of instructions
executed in order. The couples taking part in the dance execute the dance/
program as the caller moves down the list of movements, calling out each one
in turn. The couples, then, are the computer on which the dance runs.

That’s about as far as the square dance metaphor goes. Once you get the
knack of assembly language, hey, go take square dance or contra dance lessons
somewhere and see if you don’t come to the same conclusion that I did.

Assembly Language Programming As a Board Game

Board games were a really big deal when I was a kid, when board games were
actually printed on a species of board. (OK, cardboard.) Monopoly was one
that almost everybody had. There was a sort of pathway around the edge of the
board divided into squares. You had a game piece that advanced from square to
square according to dice throws, and when your piece landed on a square, you
could do one of several things: buy property that hadn’t been bought yet, pay
rent on property owned by other players, pull a card from the Chance stack,
or—eek!—go to jail. You had a pile of Monopoly money to spend, and when
another player had to pay rent, you got more.

The specifics of the Monopoly game aren’t important here. What matters is
that you progress through a series of steps, and at each step, something happens.
Your pile of money grows or shrinks. Assembly language is a little like that:
a program is like the game board. Each step in the program does something.
There are places where you can store numbers. The numbers change as you
move through the program.

Now that you’re thinking in terms of board games, take a look at Figure 1.1.
What I’ve drawn is actually a fair approximation of assembly language as it
was used on some of our simpler computers 50 or 60 years ago. The column
marked “Program Instructions” is the main path around the edge of the board,
of which only a portion can be shown here. This is the assembly language com-
puter program, the actual series of steps and tests that, when executed, causes
the computer to do something useful. Setting up this series of program instruc-
tions is what programming in assembly language actually is.

	 Chapter 1 ■ It’s All in the Plan	 7

Everything else is odds and ends in the middle of the board that serve the game
in progress. Most of these are storage locations that contain your data. You’re
probably noticing (perhaps with sagging spirits) that there are a lot of numbers
involved. (They’re weird numbers, too. What, for example, does “004B” mean?
I deal with that issue in Chapter 2, “Alien Bases.”) I’m sorry, but that’s simply
the way the game is played. Assembly language, at its deepest level, is nothing
but numbers, and if you hate numbers the way most people hate anchovies,
you’re going to have a rough time of it. (I like anchovies, which is part of my
legend. Learn to like numbers. They’re not as salty.) Higher-level programming
languages such as Pascal or Python disguise the numbers by treating them sym-
bolically. But assembly language, well, it’s just you and the numbers.

I should caution you that the Game of Assembly Language in Figure 1.1 repre-
sents no real computer processor, like the Intel Core i5. Also, I’ve made the names
of instructions more clearly understandable than the names of the instructions
in Intel assembly language actually are. In the real world, instruction names

Figure 1.1:  The Game of Assembly Language

8	 Chapter 1 ■ It’s All in the Plan

are typically short things like LAHF, STC, INC, SHRX, and other crypticisms
that cannot be understood without considerable explanation. We’re easing into
this stuff sidewise, and in this chapter I have to sugarcoat certain things a little
to draw the metaphors clearly.

Code and Data
Like most board games, the assembly language board game consists of two
broad categories of elements: game steps and places to store things. The “game
steps” are the steps and tests I’ve been speaking of all along. The places to store
things are just that: cubbyholes into which you can place numbers, with the
confidence that those numbers will remain where you put them until you take
them out or change them somehow.

In programming terms, the game steps are called code, and the numbers in
their cubbyholes (as distinct from the cubbyholes themselves) are called data.
The cubbyholes themselves are usually called storage. (The difference between
the places you store information and the information you store in them is cru-
cial. Don’t confuse them.) Consider an instruction in the Game of Assembly
Language that says ADD 32 to A. An ADD instruction in the code alters a data
value stored in a cubbyhole named Register A.

Code and data are two very different kinds of critters, but they interact in
ways that make the game interesting. The code includes steps that place data
into storage (MOVE instructions) and steps that alter data that is already in
storage (INCREMENT and DECREMENT instructions, and ADD instructions,
among others). Most of the time you’ll think of code as being the master of data,
in that the code writes data values into storage. Data does influence code as
well, however. Among the tests that the code makes are tests that examine data
in storage, the COMPARE instructions. If a given data value exists in storage,
the code may do one thing; if that value does not exist in storage, the code will
do something else, as in the JUMP BACK and JUMP AHEAD instructions.

The short block of instructions marked PROCEDURE is a detour off the main
stream of instructions. At any point in the program you can duck out into the
procedure, perform its steps and tests, and then return to the very place from
which you left. This allows a sequence of steps and tests that is generally use-
ful and used frequently to exist in only one place rather than exist as separate
copies everywhere it’s needed.

Addresses
Another critical concept lies in the funny numbers at the left side of the program
step locations and data locations. Each number is unique, in that a location tagged
with that number appears only once inside the computer. This location is called

	 Chapter 1 ■ It’s All in the Plan	 9

an address. Data is stored and retrieved by specifying the data’s address in the
machine. Procedures are called by specifying the address at which they begin.

The little box (which is also a storage location) marked “Program Counter”
keeps the address of the next instruction to be performed. The number inside
the program counter is increased by one (incremented) each time an instruction
is performed unless the instruction tells the program counter to do something else.
For example, notice the JUMP BACK 9 instruction at address 004B. When this
instruction is performed, the program counter will “back up” by nine locations.
This is analogous to the “go back three spaces” concept in most board games.

Metaphor Check!
That’s about as much explanation of the Game of Assembly Language as I’m
going to offer for now. This is still Chapter 1, and we’re still in metaphor territory.
People who have had some exposure to computers will recognize and under-
stand some of what Figure 1.1 is doing. People with no exposure to computer
innards at all shouldn’t feel left behind for being utterly lost. I created the Game
of Assembly Language solely to put across the following points:

■■ The individual steps are very simple. One single instruction rarely does more
than move a single value from one storage cubbyhole to another, perform
very elementary arithmetic like addition or subtraction, or compare the
value contained in one storage cubbyhole to a value contained in another.
This is good news, because it allows you to concentrate on the simple task
accomplished by a single instruction without being overwhelmed by
complexity. The bad news, however, is the next point.

■■ It takes a lot of steps to do anything useful. You can often write a useful
program in such languages as Pascal or BASIC in five or six lines. You
can actually create useful programs in visual programming systems like
Visual Basic, Delphi, or Lazarus without writing any code at all. (The code
is still there . . . but the code is “canned” and all you’re really doing is
choosing which chunks of canned code in a collection of many such chunks
will run.) A useful assembly language program cannot be implemented
in fewer than about 50 lines, and anything challenging takes hundreds or
thousands—or tens of thousands—of lines. The skill of assembly language
programming lies in structuring these hundreds or thousands of instruc-
tions so that the program both operates correctly and can still be read and
understood by other programmers—and yourself—six months later.

■■ The key to assembly language is understanding memory addresses. In such lan-
guages as Pascal and BASIC, the compiler takes care of where something
is located—you simply have to give that something a symbolic name and
call it by that name whenever you want to look at it or change it.

